

Mark Scheme (Results)

Summer 2013

International GCSE Further Pure Mathematics Paper 1 (4PM0/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2013 Publications Code UG037141 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- o M marks: method marks
- A marks: accuracy marks. Can only be awarded if the relevant method mark(s) has (have) been gained.
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- indep independent
- o eeoo each error or omission

• No working

If no working is shown then correct answers may score full marks.

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated always check the working and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread which does not significantly simplify the question loses two A (or B) marks on that question, but can still gain all the M marks. Mark all work on follow through but enter AO (or BO) for the first two A or B marks gained.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there are multiple attempts shown, then all attempts should be marked and the highest score on a single attempt should be awarded.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

• Follow through marks

Follow through marks which involve a single stage of calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

Ignore subsequent working

It is appropriate to ignore subsequent working when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent working when the additional work essentially shows that the candidate did not understand the demand of the question.

• Linear equations

Full marks can be gained if the solution alone is given, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

General Principles for Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x =

2. <u>Formula</u>

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1.

2. Integration:

Power of at least one term increased by 1.

Use of a formula:

Generally, the method mark is gained by **either** quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values **or**, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks". General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show....")

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Questio Numbe		Schem	e	Marks
	(a)	(b)	(c)	
1.	$126 = \frac{1}{2}12^2\theta$	or	$\frac{\theta}{360} \times \pi \times 12^2 = 126$	M1
	$\theta = \frac{126}{72} = 1\frac{3}{4}$	$126 = \frac{1}{2} \times 12 \times l$	$\theta = \frac{126 \times 360}{144\pi} = 100.27^{\circ}$	A1
	$l = 12 \times \frac{7}{4}$	$l = \frac{126}{6}$	$\theta = \frac{126 \times 360}{144\pi} = 100.27^{\circ}$ $l = \frac{100.27}{360} \times 2\pi \times 12 = \frac{126 \times 24}{144}$	M1
	= 21 (cm) Method (d) in Not			A1 (4)
		No	tes	
M1 4 A1 4 M1 4 A1 4 Method	(a) and (c) For an expression in eif For a fully correct exprision an expression in eif AB = 21(cm) cso (b)	ession with correct nu ther degrees or radians	s using $A=126$ to find angle θ merical values s with their θ to find arc length AB	
M1 t	For a correct formula $\frac{1}{2}rl$			
A1 1 M1 1 A1	For correct substitution for equating their form $= 21$ (cm) cso	of the value of r , (=12)	2)	
Method		1 1 11 100		
	For an area of a circle of $r = 12$	livided by 126		
M1 1	0	rcumference of the cire	cle divided by their value of the sca	le factor using a
	For 21 (cm) cso Note: Correct solution	only seen – award ful	l marks Allow 21.0 (cm)	

Questio Numbe	Scheme	Marks			
2.					
	$3x^2 + 7x - 6 < 0$	M1 A1			
	(3x-2)(x+3) < 0	M1			
	$-3 < x < \frac{2}{3}$	A1 (4)			
	Notes				
Questio	on 2				
M1	for obtaining a 3TQ equation or expression (=0 not required for this mark)				
A1	for attempting to find their critical values as far as $x =$ (We are treating this a	as an M mark)			
	for choosing the inside region for their critical values.				
A1	A1 cao for $-3 < x < \frac{2}{3}$. Accept $-3 < x$ and $x < \frac{2}{3}$ and $-3 < x \cap x < \frac{2}{3}$.				
	Do not accept $-3 < x$ or $x < \frac{2}{3}$, or $-3 < x$, $x < \frac{2}{3}$. These are all A0				
	Use of \leq loses the final A mark				

Question Number	Nenama	Marks	
3.	(a) $a = -3$ $b = 1$	B1 B1	
	(a) $a = -3$ $b = 1$ (b) at (1,0) $0 = 1 + \frac{c}{1-3}$	M1	
	$-1 = \frac{c}{-2}$ $c = 2$ at (0, d) $d = 1 + \frac{2}{-3}$	A1	
	at $(0,d)$ $d = 1 + \frac{2}{-3}$	M1	
	$d = \frac{1}{3}$	A1 (6)	
	Notes		
Question	13		
(a)			
	or either a or b or both a and b		
M1 fo	for substituting in $y = 0$ and $x = 1$ into the equation of the curve. <i>a</i> need not be substituted for this mark		
(b)			
A1 fo	or $c = 2 \cos \theta$		
SI	M1 for substituting $x = 0$ and $y = d$ into the equation of the curve to find <i>d</i> . Neither <i>c</i> nor <i>a</i> need to be substituted for this mark.		
A1 <i>d</i>	$=\frac{1}{3}$ cso.		

Question Number	Scheme	Marks
4.	$6(1 - \cos^2 x) - \cos x - 4 = 0$	M1
	$6\cos^2 x + \cos x - 2 = 0$	A1
	$(3\cos x + 2)(2\cos x - 1) = 0$	M1
	$(\cos x = -\frac{2}{3})$ or $\cos x = \frac{1}{2}$	A1
	x = -60 or $x = 60$	A1 A1 (6)
	Notes	
Question		
	r using $\cos^2 x + \sin^2 x = 1$ to achieve an equation in terms of $\cos x$ only. (=0 no	t required for
	is mark)	
	r forming the correct 3TQ	
M1 fo	r solving their 3TQ as far as $\cos x = \dots (usual rules for an attempt)$ Their	quadratic need
n	pt = 0 at this stage	
A1 co	os $x = \frac{1}{2}$, (cos $x = -\frac{2}{3}$ - this need not be seen)	
A1 fo	r either value of $x = 60$, $x = 60$	
A1 fo	r both values $x = 60$ $x = 60$	
If other w	alues are given, ignore if not in range. Deduct one A mark for each extra valu	e that is in range,
	aximum of the last two A marks.	0.,
1		

Questi	Nenomo	Marks
Numb	$V = 500 \Longrightarrow 4h^3 = 500$	M1
5.	$v = 500 \implies 4n = 500$ $\implies h = 5$	Al
	$\frac{\mathrm{d}V}{\mathrm{d}h} = 12h^2$	M1 A1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{12h^2} \times 36$	M1
	$=\frac{36}{12\times5^2}=\frac{3}{25}=0.12$ cm/s	M1 A1 (7)
	Notes	
Questi	on 5	
Note:	Parts of the question can be found anywhere in their working on the page	
M1	for $V = 500 \Rightarrow 4h^3 = 500$	
A1	$h = 5 \operatorname{cso}$	
M 1	for differentiating $V = 4h^3$ (usual rules apply)	
A1	for $\frac{dV}{dh} = 12h^2$ cso	
M1	for applying chain rule to find an expression for $\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$ or any correct an	rangement
	(expression is sufficient – substitution of values is not required for this mark)	
M1	for substituting values into their $\frac{dh}{dt}$	
A1	for $\frac{dh}{dt} = \frac{3}{25} = 0.12 \text{ (cm s}^{-1}\text{)}$ oe - exact answer only.	

Numb	ion Der	<u></u>	Scheme	Marks	
<u>6.</u>		$\alpha + \beta = -p$		B1	
	(ii)	01	$\begin{cases} \alpha^2 + p\alpha + 1 = 0 \\ \beta^2 + p\beta + 1 = 0 \end{cases}$		
	(11)		(, 1,		
	$\alpha^2 + \lambda$		$\alpha^2 + \beta^2 + p(\alpha + \beta) + 2 = 0$	M1	
		$= p^2 - 2$	$\alpha^2 + \beta^2 = p^2 - 2$	A1	
	(iii) ($\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + 3\alpha\beta$	$-\beta^3$	M1	
	$\Rightarrow \alpha^3$	$\beta^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)^{3}$	$(-p)^{3} - 3(-p)$	M1 A1	
		$=3p-p^3$			
	altern	patives	$\begin{cases} \alpha^{3} + p\alpha^{2} + \alpha = 0\\ \beta^{3} + p\beta^{2} + \beta = 0 \end{cases}$		
	$\alpha^3 + \beta$	$\beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2)$	$\alpha^3 + \beta^3 + p(\alpha^2 + \beta^2) + (\alpha + \beta) = 0$ M1		
			$\alpha^{3} + \beta^{3} + p(p^{2} - 2) - p = 0$ M1		
		$=3p-p^{3}$	$\alpha^3 + \beta^3 = 3p - p^3 \qquad A1$		
	(b)	$x^2 - (3p - p^3)x + 1 = 0$		M1ft A1ft (8)	
			Notes		
Quest	ion 6				
(a) (i)	B1 fo (Note $\alpha\beta$	$\mathbf{r} \ \alpha + \beta = -p \text{or} \left(-\frac{p}{1}\right)$			
(ii)		<i>'</i>	nd substituting in values for $\alpha + \beta$, and α	αβ	
()	Or fo	$r\begin{cases} \alpha^2 + p\alpha + 1 = 0\\ \beta^2 + p\beta + 1 = 0\end{cases}$			
		$\alpha^{2} + \beta^{2} + p(\alpha + \beta) + 2 = 0$			
(;;;)			ification is not required for this mark) $2\alpha^2 \theta + 2\alpha \theta^2 + \theta^3$ (allow some aligns in alg	abro for this	
(iii)					
		hark). Do NOT accept $(\alpha + \beta)^3 = \alpha^3 + \beta^3$ for this mark 11 leading to $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ fully correct			
	101 102				
		$\alpha^3 + \beta^3 = 3p - p^3$ oe (Sim	plification is not required for this mark)		
	A1 fo	r $\alpha^3 + \beta^3 = 3p - p^3$ oe (Simpler to ms for alternative methods)			
(b)	A1 fo Please ref	fer to ms for alternative metho	ods		
(b)	A1 fo Please ref M1 fo	For to ms for alternative method r using x^2 – their sum × x + pr			

Question Number	Nenomo	Marks
7.	(a) (i) $t_{58} = a + 57d$	B1
	(ii) $S_{13} = \frac{13}{2}(2a+12d)$	B1
	(b) $a+57d = \frac{13}{2}(2a+12d)$	
	-12a = 21d	M1
	$d = -\frac{4}{7}a$	A1
	(c) $t_{176} = a + 175d = a + 175(-\frac{4}{7}a)$ OR	M1
	$S_{21} = \frac{21}{2}(2a+20d) = 21a+210(-\frac{4}{7}a)$	
	=a-100a = -99a	A1
	$S_{21} = \frac{21}{2}(2a+20d) = 21a+210(-\frac{4}{7}a)$ OR	M1
	$t_{176} = a + 175d = a + 175(-\frac{4}{7}a)$	
	$= 21a - 120a = -99a = t_{176}$	A1
	(d) $a + (r-1)d = 5(a+8d)$	M1
	$(r-1)d = 4(-\frac{7}{4}d) + 40d$ or $(r-1)(-\frac{4}{7}a) = 4a + 40(-\frac{4}{7}a)$	
	r-1=33 or $-4(r-1)=-132$	M1
	r = 34	A1 (11)
	Notes	
	for any correct expression for t_{58} (simplification not required for for any correct expression for S_{13} (simplification not required for	
M1 f	for their t_{58} = their S_{13}	
	for collecting like terms on either side leading to $d = -\frac{4}{7}a$ cso * This is a 'show' question so all working must be seen clearly.	
	for an expression for t_{176} or S_{21} in either <i>a</i> or <i>d</i> Substitution must be for the given value of <i>d</i>	
A1 f	for $t_{176} = a - 100a = -99a$ or $t_{176} = \frac{693}{4}d \cos OR$ $S_{21} = 21a - 120a = -96a$	99a
	for an expression for t_{176} or S_{21} in either <i>a</i> or <i>d</i> Substitution must be for the given value of <i>d</i>	
A1 f	for $t_{176} = a - 100a = -99a$ OR $S_{21} = 21a - 120a = -99a = t_{176}$ or $t_{176} = S_{21}$	$=\frac{693}{4}d \cos \mathbf{with} \mathbf{a}$
M1 f A1 f	conclusion Alternative for $t_{176} = S_{21}$ using 'their' expressions for correct unsimplified $t_{176} = S_{21}$ for $-35d = 20a$ oe	
A1 f	for $d = -\frac{4}{7}a$ with a conclusion that must refer to part (b)	
M1 f	For equating expressions for t_r and $5t_9$ in r , a and d for an equation in r only (allow for slip ups in algebra for this mark) r = 34 cso	

Question Number	Scheme		Marks
8.	(a) $15 + 2x - x^2 = 0$		M1
	$(5-x)(3+x) = 0 \Longrightarrow x = 5, x = -3$		M1 A1
	(b) $\int_{-3}^{5} (15 + 2x - x^2) dx$		M1
	$= \left[15x + x^{2} - \frac{1}{3}x^{3}\right]_{-3}^{5}$		A1
	$= (75 + 25 - \frac{125}{3}) - (-45 + 9 + 9)$		M1
	$=85\frac{1}{3}$		A1
	(c) $x+9=15+2x-x^2$ $x^2-x-6=0 \Rightarrow (x-3)(x+2)=0 \Rightarrow x=3, x=-2$		M1 M1 A1
	$x - x - 0 = 0 \Longrightarrow (x - 3)(x + 2) = 0 \Longrightarrow x - 3, x2$		MI AI
	(d) $M = 85\frac{1}{3} - \int_{-2}^{3} \left\{ (15 + 2x - x^2) - (x + 9) \right\} dx$		M1
	$=85\frac{1}{3} - \int_{-2}^{3} \left\{ 6 + x - x^{2} \right\} dx$		
	$= 85 \frac{1}{3} - \left[6x + \frac{1}{2}x^2 - \frac{1}{3}x^3\right]_{-2}^3$		A1
	$= 85\frac{1}{3} - \left\{ (18 + 4\frac{1}{2} - 9) - (-12 + 2 + \frac{8}{3}) \right\}$		M1
	$=85\frac{1}{3}-20\frac{5}{6}=64\frac{1}{2}$		A1 (14)
	Alternative		
	(d) $M = \int_{-3}^{-2} (15 + 2x - x^2) dx + \frac{1}{2} (7 + 12) 5 + \int_{3}^{5} (15 + 2x - x^2) dx$	M1	
	$= \left[15x + x^{2} - \frac{1}{3}x^{3}\right]_{-3}^{-2} + \frac{95}{2} + \left[15x + x^{2} - \frac{1}{3}x^{3}\right]_{3}^{5}$	A1	
	$= (-30 + 4 + \frac{8}{3}) - (-45 + 9 + 9) + 47\frac{1}{2} + (75 + 25 - \frac{125}{3}) - (45 + 9 - 9)$	M1	
	$= 3\frac{2}{3} + 47\frac{1}{2} + 13\frac{1}{3} = 64\frac{1}{2}$	A1	

N	otes	

ľ **Question 8 (a)** for setting $15 + 2x - x^2 = 0$ **M**1 **M**1 for solving the quadratic as far as $x = \dots$ for x = 5, x = -3A1 **(b)** Ignore limits for first M1 and A1 for an attempt at $\int 15x + 2x - x^2 dx$ (Usual rules) ft their values of x in (a) **M**1 A1 for a fully correct integrated expression for an evaluation of their integrated expression with their limits **M**1 for an area = $85\frac{1}{3}$ or $\frac{256}{3}$ or awrt 85.33 (with a **minimum** of 2dp) cso. A1 (c) for equating line *l* with curve C $(x+9=15+2x-x^2)$ M1 for forming a 3TQ and attempting to solve as far as x =**M**1 A1 for x = 3, x = -2(**d**) **M1** for forming a COMPLETE expression of the area, either from, M = $85\frac{1}{3}$ (or their area in part (b)) $-\int_{-2}^{3} \{(15+2x-x^2)-(x+9)\} dx$ or, $M = \int_{-3}^{-2} (15 + 2x - x^2) dx + \frac{1}{2} (7 + 12) 5 + \int_{3}^{5} (15 + 2x - x^2) dx$ using their limits found in (c) for correct integration of their expression for the area A1 for evaluating their integrated expression for the area dM1 either, $=85\frac{1}{3}-20\frac{5}{6}=64\frac{1}{2}$, or $=3\frac{2}{3}+47\frac{1}{2}+13\frac{1}{3}=64\frac{1}{2}$ or = exact answer only A1 If they do not form a complete expression for the area, then M0 A0 dM0 A0 NOTE:

Question Number	Scheme	Marks
9.	(a) $\angle ABC = 90^{\circ}$	B1
	$\cos 30 = \frac{BC}{12} \text{or} \qquad \sin 60 = \frac{BC}{12}$	M1
	$BC = 12\cos 30 = 6\sqrt{3}$ cm or $BC = 12\sin 60 = 6\sqrt{3}$ cm	A1
	(b) $\sin 30 = \frac{BP}{6\sqrt{3}}$	M1
	$\Rightarrow BP = 6\sqrt{3}\sin 30 = 6\sqrt{3} \times \frac{1}{2} = 3\sqrt{3} \text{ cm}$	A1
	(c) $\tan 25 = \frac{3\sqrt{3}}{BF}$ or $\tan 65 = \frac{BF}{3\sqrt{3}}$	M1
	$\Rightarrow BF = \frac{3\sqrt{3}}{\tan 25} \qquad \text{or} \qquad BF = 3\sqrt{3}\tan 65$	A1
	$\Rightarrow BF = 11.1 \text{ cm (3SF)}$	A1
	(d) $BD^2 = (3\sqrt{3}\tan 65)^2 + (6\sqrt{3})^2$ or $DP^2 = (3\sqrt{3}\tan 65)^2 + (3\sqrt{3}\tan 60)^2$	M1
	$BD = \sqrt{232.17} = 15.24$ or $DP = \sqrt{205.2} = 14.32$	A1
	$\sin BDP = \frac{3\sqrt{3}}{15.24}$ or $\tan BDP = \frac{3\sqrt{3}}{14.32}$	M1
	$\angle BDP = 19.9^{\circ}$	A1
	(e) Volume $=\frac{1}{2} \times 12 \times 3\sqrt{3} \times (3\sqrt{3} \tan 65)$	M1
	$= 162 \tan 65^{\circ} = 347 \text{ cm}^3 \text{ (3SF)}$	A1 (14)

	Notes
Pleas	e note the stipulations on exact answers and the rounding required. Please refer to General
Princ	iples.
Ques	tion 9
(a)	
B1	for $\angle ABC = 90^{\circ}$, can be implied from working
M1	for any acceptable trigonometry using a complete method to find BC
A1	for the value $6\sqrt{3}$ only. Do not accept any decimal value for this mark
(b)	
M1	for using any acceptable trigonometry using a complete method to find BP
A1	for the value of $3\sqrt{3}$ only * (this is a 'show' question, all working must be correct)
(c)	
M1	for using any acceptable trigonometry using a complete method involving angles 25° or 65°
A1	for a correct expression for BF
A1	for $BF = 11.1$ (cm) – correct to 3sf for this mark
(d)	
M1	for an attempt at an expression for BD or DP , please refer to the ms for examples - ft their values
	for <i>BC</i> and <i>BF</i> , but must use $3\sqrt{3}$ for <i>BP</i>
A1	for $BD = \sqrt{232.17} = 15.24$ or $DP = \sqrt{205.2} = 14.32$
M1	for using an expression of any acceptable trigonometry to find BDP
A1	for $\angle BDP = 19.9^{\circ}$ - correct to 1dp
(e)	
M1	for an expression of the volume using the given AC (=12), $BP = 3\sqrt{3}$ only, and their BF
A1	for 347 cm ³ (correct to 3sf)
Leng	ths of line in the prism for examiners

AC = DE = 12 AB = EF = 6 BP = $3\sqrt{3}$ BF = CD = AE = 11.14.... AD = CE = 16.37... CP = 9 AP = 3 BC = DF = $6\sqrt{3}$ DP = 14.32... BD = 15.24...

Question Number	Scheme	Marks
10.	(a) $\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^3 - 12x^2 - 4x + 13$	M1 A1
	at R, $\frac{dy}{dx} = 4 - 12 - 4 + 13 = 1$	
	l_1 has equation $y - 13 = 1(x - 1)$ [$y = x + 12$]	M1 A1
	(b) $4x^3 - 12x^2 - 4x + 13 = 1$	N/1
	$4x^{3}-12x^{2}-4x+12=0$ $4(x-1)(x^{2}-2x-3)=0$	M1
	4(x-1)(x+1)(x-3) = 0 x = -1, x = 1, x = 3	M1
	x = -1, x = 1, x = 5 At P, $x = -1, y = 1 + 4 - 2 - 13 + 5 = -5$ so $P(-1, -5)$	A1
	At Q , $x = 3$, $y = 81 - 108 - 18 + 39 + 5 = -1$ so $Q(3, -1)$	A1
	(c) Gradient of $PQ = \frac{-5+1}{-1-3} = 1$	
	Equation of l_2 is $y+1=1(x-3)$ [$y=x-4$] or $y+5=1(x+1)$	M1 A1
	(d) Gradient of l_2 = gradient of <i>C</i> at <i>P</i> = gradient of <i>C</i> at <i>Q</i> [= 1] [Since l_2 passes through <i>P</i> and <i>Q</i> with the same gradient as the curve at these points, it must be a tangent to <i>C</i> at <i>P</i> and at <i>Q</i> .]	B1
	(e) Normal at <i>R</i> has equation $y-13 = -1(x-1)$	
	At intersection with l_2 , $(x-4)-13 = -1(x-1)$ or $y-13 = -1(y+4-1)$ $\Rightarrow 2x = 18$ or $2y = 10$	M1 M1
	$\Rightarrow x = 9 \qquad \text{and} \qquad y = 5$	A1
	$RS^{2} = (13-5)^{2} + (1-9)^{2}$	M1
	$RS = \sqrt{64 + 64} = 8\sqrt{2}$	A1
	(f) $PQ = \sqrt{(-1-3)^2 + (-5+1)^2} = \sqrt{16+16} = 4\sqrt{2}$	
	Area $PQR = \frac{1}{2} \times 8\sqrt{2} \times 4\sqrt{2} = 32$	M1 A1 (18)
	alternative	
	(f) Area $PQR = \frac{1}{2} \begin{vmatrix} -1 & 3 & 1 & -1 \\ -5 & -1 & 13 & -5 \end{vmatrix} = \frac{1}{2} [(1+39-5) - (-15-1-13)]$ M1	
	-3 -1 13 -3	

	Notes				
(a) M1 A1	for an attempt at differentiation (usual rules – reducing the power of at least one term, the disappearance the constant is insufficient for this mark) for a complete correct differentiated expression				
M1	for finding and using a numerical value of the gradient, derived only from using $\frac{dy}{dx}$ into either y				
A1 (b)	-13 = (their m) (x - 1), or by applying $y = mx + c$ including finding a value for c for any correct equation $y - 13 = 1 (x - 1)$ $[y = x + 12, y - x - 12 = 0]$ etc				
M1	for setting their $\frac{dy}{dx} = 1$ and re-arranging to give a cubic equation (=0)				
M1 A1	for factorising their equation leading to three values of x for either of the correct coordinates $(-1, -5)$ or $(3, -1)$ $(x = -1, y = -5$ or $x = 3, y = -1$)				
A1	for both $(-1, -5)$ and $(3, -1)$ correct, $(x = -1, y = -5 \text{ and } x = 3, y = -1)$				
(c) M1 A1 (d)	for finding the numerical gradient of l_2 using their coordinates of <i>P</i> and <i>Q</i> , and attempting to form an equation using their gradient and the points <i>P</i> or <i>Q</i> for a correct equation eg $y+5=1(x+1)$ or $y+1=1(x-3)$ [$y=x-4$]				
(u) B1 (e)	please refer to ms				
M1	for forming the equation of the normal at R. They must use a numerical gradient derived from their gradient of the tangent in part (a) using the rule $m_t \times m_n = -1$, and use the given coordinate of <i>R</i> . $y-13 = -1(x-1)$ oe ($y = -x + 14$)				
M1	for finding the point of intersection of the Normal at R and l_2 , by any acceptable method eg., simultaneous equations				
A1 M1	for the point of intersection of <i>S</i> , either $x = 9$ and $y = 5$, or gives coords (9, 5) for using Pythagoras with point <i>R</i> and their <i>S</i>				
A1 (f)	for $8\sqrt{2}$, $\sqrt{128}$ oe exact answer only				
M1 A1	for any method to find the area of triangle <i>PQR</i> ft their <i>P</i> and <i>Q</i> for area $PQR = 32$ (units ²)				

Question Number				Marks
11.	(a) $\overrightarrow{AB} = 2\mathbf{p} - 2\mathbf{q}$ oe			B1
		$(-(3\mathbf{p}-\mathbf{q}) or \qquad \overrightarrow{AC} = 6\mathbf{p} - 4\mathbf{q} - (\mathbf{p}+\mathbf{q})$ = $5\mathbf{p} - 5\mathbf{q}$		
	$= 3\mathbf{p} - 3\mathbf{q}$ $\Rightarrow \overrightarrow{AB} = \frac{2}{3}\overrightarrow{BC} \text{ or } \overrightarrow{AB} \parallel \overrightarrow{BC}$ $\Rightarrow A, B, C \text{ are collinear}$	or $\Rightarrow \overline{AB} = \frac{2}{5}\overline{A}$	\overrightarrow{C} or $\overrightarrow{AB} \parallel \overrightarrow{AC}$	A1
	(c) $AB : BC = 2 : 3$ oe			B1
	(d) $\overrightarrow{CD} = \frac{1}{2}\overrightarrow{AC}$ or $= \frac{1}{2}((2\mathbf{p}-2\mathbf{q})+(3\mathbf{p}-3\mathbf{q})))$ $= \frac{1}{2}(5\mathbf{p}-5\mathbf{q})$	$\overrightarrow{AD} = \frac{3}{2}\overrightarrow{AC}$ or	$\overrightarrow{BD} = \frac{11}{10} \overrightarrow{AC}$	
	$=\frac{1}{2}((2\mathbf{p}-2\mathbf{q})+(3\mathbf{p}-3\mathbf{q}))$			M1
	$=\frac{1}{2}(5\mathbf{p}-5\mathbf{q})$	$= \frac{3}{2}(5\mathbf{p} - 5\mathbf{q})$	$=\frac{11}{10}(5p-5q)$	A1
	$\overrightarrow{OD} = (6\mathbf{p} - 4\mathbf{q}) + \frac{1}{2}(5\mathbf{p} - 5\mathbf{q}) or (\mathbf{p} + \mathbf{q}) + \frac{3}{2}(5\mathbf{p} - 5\mathbf{q}) or (3\mathbf{p} - \mathbf{q}) + \frac{11}{10}(5\mathbf{p} - 5\mathbf{q})$			M1
	$= 8\frac{1}{2}\mathbf{p} - 6\frac{1}{2}\mathbf{q}$			A1 (8)
	alternative			
	$\frac{\overrightarrow{OA} + 2\overrightarrow{OD}}{1+2} = \overrightarrow{OC}$ $\frac{\mathbf{p} + \mathbf{q} + 2\overrightarrow{OD}}{3} = 6\mathbf{p} - 4\mathbf{q}$	or $\overrightarrow{OD} = \frac{-\overrightarrow{OA} + \overrightarrow{OA}}{-1}$	$+3\overline{OC}$ M1	
	$2\overrightarrow{OD} = 17\mathbf{p} - 13\mathbf{q}$	or $\overrightarrow{OD} = \frac{17\mathbf{p} - 1}{2}$	<u>13q</u> M1	
	$\overrightarrow{OD} = 8\frac{1}{2}\mathbf{p} - 6\frac{1}{2}\mathbf{q}$		A1	

	Notes				
Question 11					
(a)					
B1	for $\overrightarrow{AB} = 2\mathbf{p} - 2\mathbf{q}$ or any equivalent expression				
(b)					
M1	for finding a vector for $BC (= 3\mathbf{p} - 3\mathbf{q})$ or $AC (= 5\mathbf{p} - 5\mathbf{q})$				
A1	for $\overrightarrow{AB} = \frac{2}{3}\overrightarrow{BC}$ or $\overrightarrow{AB} \parallel \overrightarrow{BC}$ or $\overrightarrow{AB} = \frac{2}{5}\overrightarrow{AC}$ or $\overrightarrow{AB} \parallel \overrightarrow{AC}$				
	So A, B, C are collinear $cso - there must be two correct vectors$				
(c)					
B 1	for $AB: BC = 2:3$ (oe)				
(d)					
First Method					
M1	for forming a vector equation for either CD, AD, or BD				
A1	for k (5 p -5 q) where k is either $\frac{1}{2}$, $\frac{3}{2}$ or $\frac{11}{10}$ for CD, AD, or BD respectively				
M1	for finding an expression for OD (alternatives in ms)				
A1	for $\overrightarrow{OD} = 8\frac{1}{2}\mathbf{p} - 6\frac{1}{2}\mathbf{q}$ oe				
Seco	Second method				
M1	for the ratio of AC: CD				
A1	for $AC:CD = 2:1$				
M1	for either component of p or q correct, ie., $8\frac{1}{2}$ p OR $-6\frac{1}{2}$ q				
A1	for a complete correct expression for , $\overrightarrow{OD} = 8\frac{1}{2}\mathbf{p} - 6\frac{1}{2}\mathbf{q}$, $\overrightarrow{OD} = \frac{17\mathbf{p} - 13\mathbf{q}}{2}$, oe				

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UG037141 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

